ESV vs. FS

The following document is a response to FWCC's presentation dated on July 29th 2004.

In the above presentation FWCC presented two examples of ways to calculate interference level.

Here are our remarks:

- 1) The assumption that FS and ESV transmit at the same BW is wrong. FS transmits 3MHz and up while ESV transmits 64-128Kbps.
- 2) The assumption that ESV minimum look angle is: 10° is wrong. The minimum angle is: 20°.
- 3) ESV transmit power (at the HPA output) is: 33dbm @64Kbps and 35dbm @128Kbps
- 4) The assumption that FS and ESV antennas don't have azimuth angle between them is not reasonable. 20° Azimuth shift is more practical..
- 5) FS antenna is more likely to be: 3' (8' antenna is rare and will need special structure to support wind load).
- 6) Although the minimum discernible signal of the standard Microwave system is -70dbm the received signal is at least 25db higher to overcome fading.
- 7) The only criterion to determine interference is S/(N+I) >= S/Nmin(=34db)
- 8) We assumed negligible NF and cable loss, as they affect the signal and the interference in the same way.

Here's our calculation:

ESV and FS distance:10 miles

Path loss: -132db

ESV transmit power: 35dbm (worst case) ESV antenna gain @EL20°/AZ20° = -4dbi FS antenna (D=2') @AZ20° = -4.7dbi

Signal: Mating FS signal at receiver input: -70dbm + 25db = -45dbm

Interference: ESV signal at receiver input: 35dbm +(-4dbi) – 132db -4.7dbi = -105.7dbm

Noise level: F=6GHz, T=290°K, BW=3MHz = -139dbm

It means that: S/(N+I) = 60.7db >> 34db

Even if we take the 8' antenna case with azimuth shift of 20° the result will be: S/(N+I) = 56.4db >> 34db

The above proves that ESVs do not interfere with FS.